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Abstract. The earlier-suggested generalized Gibbs distribution approach to the configurational
kinetics of non-equilibrium alloys is extended to the case of many-component alloys and the
realistic vacancy-mediated atomic exchange mechanism is incorporated. Exact and approximate
equations for the temporal evolution of atomic distributions as well as for the free energy of a
non-equilibrium alloy are presented. It is shown that the evolution of the main alloy component
distribution for the nearest-neighbour vacancy exchange model can usually be described in
terms of an equivalent direct exchange model. This conclusion is illustrated with the computer
simulation of decomposition and ordering via the vacancy exchange mechanism for a two-
dimensional alloy model. The simulation also reveals the localized ordering phenomenon at very
early stages of ordering, in agreement with previous experiments and Monte Carlo simulation,
but with no interfacial vacancy trapping which was suggested in previous works in order to
explain this phenomenon.

1. Introduction

The problem of possible influence of the atomic exchange mechanism on the configurational
kinetics and microstructural evolution of alloys recently received some attention [1–9]. In
most of the theoretical treatments of these problems (see e.g. [10–15]) the simplified direct
exchange model was used. This model assumes direct exchange of positions between unlike
neighbouring atoms in an alloy, while actually the exchange occurs between the main alloy
component atoms (e.g. A or B atoms in an A–B alloy) and the neighbouring vacancies. As
the vacancy concentrationcv in alloys is actually quite small,cv . 10−4, employing the
direct exchange model greatly simplifies the theoretical studies of microstructural evolution
by reducing the computation times by several orders of magnitude. However, it is not
cleara priori whether using the unrealistic direct exchange model results in some errors or
missing some effects in the theoretical description. In particular, a notable segregation of
vacancies at interphase or antiphase boundaries was observed in theoretical studies of some
alloy models [1–5, 7–9, 16], and the problem of possible influence of this segregation on
the microstructural evolution was discussed by a number of authors.

Most of these studies used Monte Carlo simulation and found the main features of the
evolution via the direct and vacancy exchange mechanisms to be similar. In particular,
the asymptotic growth law for the mean size of precipitates under spinodal decomposition,
Rp ∼ t1/3, and that of the ordered domain size under alloy ordering,Rd ∼ t1/2, were
usually observed for both kinetic mechanisms [1–3, 6, 7], except in [4] and [5] where some
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differences for the asymptotic ordered domain growth law have been found. Atheneset al
[7] also observed some peculiar features of the vacancy-mediated kinetics at very early stages
of ordering which are discussed below in section 5. Chen and Geng [8, 9] simulated the
vacancy-mediated spinodal decomposition and ordering employing some kinetic equations
[18] that seem to be not entirely consistent [15]. The results of [8] and [9] notably differ
from those of other works [1, 4, 16], in particular in the degree of vacancy segregation at
interphase and antiphase boundaries, which seems to be one more indication of unreliability
of equations proposed in [18].

In the present paper we use the analytical approach to the description of the alloy
configurational kinetics based on the fundamental master equation for probabilities of various
distributions of atoms over lattice sites. The main ideas of this approach have been discussed
in [14] and [15] using the direct atomic exchange model for a binary alloy AB. As actually
the exchange is realized via vacancies, to realistically describe the kinetics one should
consider many-component alloys with at least three species, such as ABv alloys. In a recent
paper [16] we studied stationary distributions of vacancies in an ABv alloy and showed that
they often tend to segregate at interphase or antiphase boundaries. In the present work we
extend this approach to the dynamical problems.

In section 2 we generalize the master equation approach described in [15] to the many-
component alloy case. We derive, in particular, the exact kinetic equations for local
concentrations and for the free energy of a nonequilibrium alloy. We show that the free
energy has the fundamental property of not increasing in the spontaneous evolution of the
system, similarly to the Boltzmann’s non-decreasing entropy. In section 3 we present the
basic kinetic equation in the cluster field approximation. We also discuss the expressions
for generalized driving forces and mobilities in this equation using the mean-field and the
pair cluster approximations. The results of sections 2 and 3 are used in section 4 to study
some general features of the vacancy-mediated kinetics. We show that for the conventional
nearest-neighbour vacancy exchange model the kinetics can usually be described in terms of
an equivalent direct exchange model with certain effective direct exchange rates. In section 5
we present the results of our computer simulation of vacancy-mediated decomposition and
ordering for a 2D alloy model which illustrate the conclusions of section 4. For very
early stages of ordering the simulation also reveals the localized ordering phenomenon that
was discussed earlier in [19] and [7], but our results seem to suggest new features in the
interpretation of this phenomenon. Our main results are summarized in section 6.

2. Exact equations for averages of occupation numbers and for free energy of a
many-component non-equilibrium alloy

In this section we generalize the master equation approach described in [15] to the many-
component alloy case. Our arguments follow those of [15] for a binary alloy with necessary
generalizations. We consider the substitutional alloy that includes atoms ofm different
species p= p1, p2, . . . ,pm, in particular vacancies for which p= v. Various distributions
of atoms over lattice sitesi are described with the different occupation number sets{npi}
where the operatornpi is unity when the sitei is occupied by a p-species atom and zero
otherwise. For eachi these operators obey the identity

∑
p npi = 1, so onlym− 1 of them

are independent. It is convenient to mark the independent operators with special symbols,
e.g. with greek letters:(npi )indep= nαi , while the rest operator denoted asnri is expressed
via nαi :

nri = 1−
∑
α

nαi . (1)
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In calculations it is usually convenient to put ‘r’ in (1) to be one of the main components,
e.g. r= B in the ABv alloy, as then the resulting equations explicitly include the vacancy
operatorsnvi being on average small:〈nvi〉 = cvi � 1. However, in general discussions,
such as the ‘H-theorem’ below, it may be convenient to eliminate the vacancy operators by
putting r= v in (1).

In terms of all operatorsnpi the configurational HamiltonianHt can be written as

Ht =
∑

p

8
p
i npi + 1

2

∑
pq,ij

V
pq
ij npinqj + 1

3!

∑
pqr,ijk

V
pqr
ijk npinqj nrk + · · · . (2)

Here 8p
i are possible external fields (which are present only if not all alloy sites are

equivalent), andV p...q
i...j are the interaction potentials. After elimination of the operators

nri according to (1), i.e in terms of only independentnαi , the Hamiltonian takes the form

H = E0+
∑
αi

ϕαi nαi +Hint = E0+
∑
αi

ϕαi nαi +
∑
αβ,i>j

v
αβ

ij nαinβj + · · · (3)

whereE0, ϕαi and vα...βi...j are linearly expressed via8p
i andV p...q

i...j in (2). In particular, for

the effective fieldsϕαi and pair interactionsvαβij we have

ϕαi = (8α
i −8r

i )+
∑
j

(V αr − V rr)ij +
∑
j>k

(V αrr − V rrr)ijk + · · · (4a)

v
αβ

ij = (V αβ − V αr − V rβ + V rr)ij +
∑
k

(V αβr − V αrr − V rβr + V rrr)ijk + · · · . (4b)

The fundamental master equation for the probabilityP of finding the occupation number
set{nαi} = ξ is

dP(ξ)/dt =
∑
η

[W(ξ, η)P (η)−W(η, ξ)P (ξ)] ≡ ŜP (5)

whereW(ξ, η) is theη→ ξ transition probability.
Adopting the ‘thermally activated atomic exchange model’ [11, 13] for probabilitiesW

in (5), we can express the transfer matrixŜ in (5) in terms of the probabilityW pq
ij of an

elementary inter-site exchange (‘jump’) qj ↔ pi (see [13] for details):

W
pq
ij = npinqjω

pq
ij exp[−β(Espi,qj − Êinpi,qj )] ≡ npinqj γ

pq
ij exp(βÊinpi,qj ). (6)

Here ωpq
ij is the attempt frequency,β = 1/T is the reciprocal temperature,Espi,qj is the

saddle point energy,γ pq
ij is the configurationally independent factor in the jump probability,

and Êinpi,qj is the initial (before the jump) configurational energy of jumping atoms. If we
accept for simplicity the pair interaction model, i.e. retain only the first two terms in the
Hamiltonian (2), then the operator̂Einpi,qj in equation (5) may be expressed in terms of
formal variational derivatives of the Hamiltonian (2) overnpi andnqi , Ht

pi = δH t/δnpi and
Ht

pi,qj = δ2Ht/δnpiδnqj :

Êinpi,qj = npiH
t
pi + nqjH

t
qj − npinqjH

t
pi,qj (7)

where the third term corresponds to the subtraction of the ‘double-counted’ interaction
between atoms p and q at sitesi and j . The operatorsnri in (7) and below have been
expressed via the independentnαi according to (1). When many-particle, non-pairwise
interactions are present, the simple kinetic model (5), (6) may need some refinement to
ensure the detailed balance principle (for example, if many-particle correlations are taken
into account in the treatment used).
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Multiplying (5) by operatorsnαi, nαinβj etc, and summing over all configurational
states, i.e. over all number sets{nαi}, we obtain the set of equations for averages
〈nαinβj . . . nγ k〉 ≡ gαβ...γij ...k , in particular, for the local concentrationcαi = 〈nαi〉 = gαi :

dgαβ...γij ...k /dt = 〈nαinβj . . . nγ kŜ〉 (8)

where〈(. . .)〉 = Tr{(. . .)P } means the averaging over the distributionP , i.e. the summation
of the operator product(. . .)P over all occupation number sets{ξ}.

Using (5) and (6) we can write (8) as [13, 15]

d

dt
g
αβ...γ

ij ...k =
∑

p; s 6=i 6=j 6=...k
〈(γ pα

is npinαs eβE
in
pi,αs − γ pα

si npsnαi eβE
in
ps,αi )nβj . . . nγ k〉

+{αi → βj, . . . γ k} (9)

where{αi → βj, . . . γ k} denotes the sum of expressions obtained from the first term in (9)
by index permutation.

Sincenαi are the projection operatorsnαinβi = δαβnαi , the most general expression for
the distribution functionP(ξ) = P {nαi} in (5) can be written as

P {nαi} = exp

[
β

(
�+

∑
αi

λαi nαi −Q
)]
≡ exp[β(�−Q′)]. (10)

Here the ‘quasi-Hamiltonian’Q′ is

Q′ = −
∑
αi

λαi nαi +Q = −
∑
αi

λαi nαi +
∑
αβ,i>j

a
αβ

ij nαinβj + · · · (11a)

the ‘quasi-interaction’ termQ is an analogue of the interactionHint in (3), and the
generalized grand canonical potential� is determined by the normalizing condition:

� = −T ln Tr exp(−βQ′). (11b)

For what follows it is convenient to rewrite (9) in a form more symmetrical with respect
to the permutation of indicesi and s. To this end we make manipulations analogous to
those used in [15]. We perform summation over all possible occupations of sitesi and s,
i.e. over all values ofnδi andnεs (being either zero or unity) in the first term of (9). Due to
the presence of the projection operatornpinαs in this term, the summation reduces to putting
nqi = δqp andnεs = δεα in the nqi- andnεs-dependent exponential factor expY multiplied
by this projection operator, where

Y = β(Einpi,αs −Q′). (12)

To employ the well elaborated calculation methods of statistical physics to the obtained
relation it is convenient to restore formally the summation over all occupation number sets
{ξ} in (9), including all values ofnδi andnεs . To this end we can introduce the operator
nrinrs in the summand. Since this projection operator is nonzero only when allnδi andnεs
are zero, the summation with this factor over all possible occupations of sitesi and s is
equivalent to omitting allnδi- andnεs-dependent terms in the exponential expY . Therefore,
the result of the summation can be written as∑

nδi ,nεs

npinαs expY =
∑
nδi ,nεs

nrinrs exp(Ypi + Yαs + Ypi,αs + Y ). (13)

HereYpi , Yαs andYpi,αs are the variational derivatives of the operatorY over the relevant
occupation numbers:Ypi = δY/δnpi , etc. The first, second or third term of the exponential
in (13) corresponds to the contribution to the sum (13) of the term inY linear in npi but
not in nαs , linear innαs but not innpi or linear in bothnpi andnαs , respectively. At p= r
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the derivativesYpi andYpi,αs in (13) should be put zero as the operatorY in (13) depends
only on the independent variablesnδi but not onnri (this rule can be checked directly by
putting p= r in (9)).

Analogous manipulations in the second term of (9) correspond just to the interchange
of indicesi ↔ s. Finding the variational derivatives in (13) with the use of (12) and (7),
we obtain the following symmetrical form of (9)

dgαβ...γij ...k /dt =
∑

p,s 6=i 6=j ... 6=k
γ

pα
is 〈
(
expDpα

is − expDpα
si

)
nrinrsnβj . . . nγ k〉 + {αi → βj, . . . γ k}.

(14)

Here

Dλα
is = β(H t

λi +Ht
αs +Ht

λi,αs −Q′λi −Q′αs −Q′λi,αs) (15a)

Drα
is = β(H t

αs −Q′αs)+9i (15b)

9i = β
(
ϕr
i +

∑
νl

vrν
il nνl

)
(15c)

whereϕr
i = 8r

i +
∑

l V
rr
il , vrν

il = V rν
il − V rr

il , and we took into account thei → s symmetry
of the configuration-independent factorγ pα

is in the jump probability.
For the pairwise interactions under consideration the differencesHt

αs − Qαs and
Ht
λi,αs −Q′λi,αs in (15), according to (2)–(4), can be written as

Ht
αs −Qαs = (H −Q′)αs + ϕr

s +
∑
νl

vrν
sl nνl (16a)

Ht
λi,αs −Q′λi,αs = (H −Q′)λi,αs + V λαis − vλαis . (16b)

Here (H − Q′)αs means(Hαs − Q′αs) whereHαs = δH/δnαs or Q′αs = δQ′/δnαs is
the variational derivative of the Hamiltonian (3) or the quasi-Hamiltonian (11a), and
(H −Q′)λi,αs is the difference of analogous second variational derivatives ofH andQ′:

(H −Q′)αs = λαs + ϕαs + (Hint −Q)αs (17a)

(H −Q′)λi,αs = (Hint −Q)λi,αs . (17b)

Let us divide the operatorDpα
is in (14) into partsDpα+

is andDpα−
is , symmetrical and

antisymmetrical in indicesi ands: Dpα
is = Dpα+

is +Dpα−
is . Using (15) and (16), we find

Dλα+
is = ( 1

2β[(H −Q′)λi + (H −Q′)αi + (H −Q′)λi,αs ] +9i)+ {i → s}
+β(V λαis − vλαis ) (18a)

Drα+
is = ( 1

2β(H −Q′)αi +9i)+ {i → s} (18b)

Dλα−
is = 1

2β[(H −Q′)λi − (H −Q′)αi + (H −Q′)λi,αs ] − {i → s} (18c)

Drα−
is = 1

2β[(H −Q′)αs − (H −Q′)αi ] (18d)

where we took into account thei → s symmetry of the pair potentialsV λαis andvλαis . Then
we can write the kinetic equations (14) in the final form that generalizes (14) of [15] to the
many-component alloy case:

dgαβ...γij ...k /dt =
∑

p,s 6=i 6=j ... 6=k
γ

pα
is 〈exp(Dpα+

is )[exp(Dpα−
is )− exp(−Dpα−

is )]nrinrsnβj . . . nγ k〉

+{αi → βj, . . . γ k}. (19)

The expression in square brackets in (19) has evidently the meaning of the ‘generalized
driving force’ that determines the evolutionary trends in the atomic distribution, while its
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prefactor plays a role of the generalized mobility. Note that for actual substitution alloys
with the vacancy-mediated atomic exchange, the jump probabilityγ

pα
is in (19) is nonzero

only when either p orα species corresponds to the vacancy, i.e. either p= v andα 6= v, or
α = v and p6= v.

Following the arguments of [15] one can use (19) to prove the ‘H -theorem’, i.e. to
define the ‘non-equilibrium free energy’ having a fundamental property not to increase
under spontaneous evolution of the system. To simplify the proof we put the component r
in (1) to be a vacancy: r= v . Then the jump probabilityγ pα

is in (19) is nonzero only at
p= r = v, so these equations take the form

dgαβ...γij ...k /dt =
∑

s 6=i 6=j ... 6=k
γ vα
is 〈exp(Dvα+

is )[exp(Dvα−
is )− exp(−Dvα−

is )]nvinvsnβj . . . nγ k〉

+{αi → βj, . . . γ k}. (20)

Let us multiply (20) for dgαi /dt ≡ dcαi /dt by the factorãαi = −(λαi + ϕαi ) and sum it
over i andα; (20) for dgα1...αm

i1...im
/dt by the factorãα1...αm

i1...im
= aα1...αm

i1...im
− vα1...αm

i1...im
(for the pairwise

interaction under consideration the potentialv
α1...αm
i1...im

atm > 3 is zero) and sum this equation
over all α1, . . . , αm and i1 > . . . > im, etc. Then we sum up all these equations. If we
denote for brevity the operator exp[β(Q′ − H)αi ] as 5αi , the resulting relation may be
written as

dF

dt
= −1

2
T
∑
α,is

〈
Avα
is (5αi −5αs) ln

5αi

5αs

〉
. (21)

Here a non-negative quantityAvα
is is expressed via operatorsDvα+

is and5αi as

Avα
is = γ vα

is exp(Dvα+
is )nvinvs(5αi5αs)

−1/2 (22)

while the generalized free energyF is defined by the differential relation analogous to the
first law of thermodynamics:

dF =
∑
αi

(λαi + ϕαi ) dcαi +
∑

α...β,i>...j

(v
α...β

i...j − aα...βi...j ) dgα...βi...j . (23)

In the derivation of (21) we took into account that according to (18d) for r = v the operator
exp(Dvα−

is ) is equal to(5αs/5αi)
1/2, while 5αi is related to quantities̃aα1...αm

i1...im
as

5αi = exp

[
β

(
ãαi +

Ns∑
m=2

∑
γ2...γm,j2>...jm

ã
αγ2...γm
ij2...jm

n
γ2
j2
. . . n

γm
jm

)]
(24)

whereNs is the total number of sites in the lattice. As the summand in the right-hand side
of (21) is not negative (and is similar in its form to the expression arising in proofs of the
H -theorem for entropy), the relation (21) shows that the quantityF has the fundamental
property not to increase under spontaneous evolution of the system.

To relate the free energyF to the generalized grand canonical potential� we note that
according to the definition (11b) the derivatives of the function�{λαi , aα...βi...j } over λαi and

a
α...β

i...j are equal to(−cαi) andgα...βi...j , respectively. Thus the first law of thermodynamics for
the potential� has the form

d� = −
∑
αi

cαi dλαi +
∑

α...β,i>...j

g
α...β

i...j daα...βi...j . (25)

Comparing (25) and (23) we see that the functionF −〈H 〉 is related to� with the Legendre
transformation from variablesaα...βi...j to gα...βi...j :

F − 〈H 〉 = �−
Ns∑
m=1

∑
α1...αm,j1>...jm

a
α1...αm
j1...jm

g
α1...αm
j1...jm

(26)
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whereaαi is (−λαi ). As the last sum in (26) is just the average〈Q′〉, the free energyF can
also be written as

F = �+ 〈H −Q′〉 (27)

while (23) shows that the derivatives ofF = F {cαi, gα...βi...j } over its arguments are

∂F/∂cαi = λαi + ϕαi (28a)

∂F/∂g
α...β

i...j = vα...βi...j − aα...βi...j . (28b)

The above-mentionedH -theorem implies that in the stationary state the free energy is
minimal with respect to its variablescαi andgα...βi...j provided the total numberNα =

∑
i cαi

of atoms of each species is fixed. Then (21) yield the equilibrium conditions having the
usual Gibbs-like form:

λαi + ϕαi = µα = constant (29a)

a
α...β

i...j = vα...βi...j or Q = Hint . (29b)

Exact relations of this section can be used for various approximate treatments of the
kinetic problems. Such treatments are discussed below.

3. Approximate expressions for generalized driving forces and mobilities

To approximately solve (19) one can use various approximate methods of statistical physics,
such as the mean-field approximation (MFA), the cluster field method (CFM) [20, 21], and
the cluster variation method (CVM) [22]. As mentioned in [15], in both MFA and CFM the
interaction renormalization effects are neglected, i.e. the ‘short-range equilibrium’ relations
(29b) are supposed to hold. Thus the difference(Hint −Q) in (17) vanishes, and (19) yield
the closed set of equations for local concentrationscαi . Using the relations (17), (18) and
(29) we can write these equations as

dcαi
dt
=
∑
p,s

M
pα
is 2 sinh

[
1

2
β
(
Fpi − Fps − Fαi + Fαs

)]
. (30)

HereFpi is ∂F/∂cpi , and for p= r the derivativeFpi is zero (similarly to the derivativeYpi

in (13)). The generalized mobilityMpα
is in (30) is determined by the relation

M
pα
is = γ pα

is 〈nrinrs exp(Dpα+
is )〉. (31)

In the explicit form, the mobilities can be written as

Mλα
is = γ λαis Bis exp[β(V λαis − vλαis )+ 1

2β(Fλi + Fλs + Fαi + Fαs)] (32a)

M rα
is = γ rα

is Bis exp[1
2β(Fαi + Fαs)] (32b)

where the common factorBis is given by the expression

Bis = 〈nrinrs e9i+9s 〉 = eβ(ϕ
r
i+ϕr

s )〈nrinrs eβ
∑

νl (v
rν
il +vrν

sl )nνl 〉. (33)

At realistically small concentrations of vacancies all terms proportional tocvi in (33) can be
neglected, thus the factorBis is determined only by the main alloy component distribution.

Equations (30)–(33) are greatly simplified in the MFA. The MFA expressions for the
free energyF {cpi} and its derivativesFαi are

F = E0+
∑
αi

ϕαi cαi +
∑
αβ,i>j

v
αβ

ij cαicβj + T
∑
i

(
cri ln cri +

∑
α

cαi ln cαi

)
(34a)

Fαi = ϕαi +
∑
βj

v
αβ

ij cβj + T ln
cαi

cri
. (34b)
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In finding the operator averages the MFA corresponds to replacing each operatornpi by
its mean valuecpi neglecting all possible correlations [14, 13]. Then (30) take the known
MFA form that corresponds to the direct MFA averaging of (9) forgαi = cαi , see e.g. [14]:

dcαi/dt =
∑
p,s

γ
pα
is (cpicαs eβ[8pi+8αs+

∑
qj (V

pq
ij +V αq

sj )cqj ] − {i → s}). (35)

Note that the factors of the type of exp(βV pq
is ) in (35) are omitted, in accordance with

the MFA validity condition: βV pq
is � 1 [13, 21]. For the binary alloy AB and the direct

exchange model (32)–(35) yield the known MFA expression for the mobility [11, 23, 15]

MBA
is = γ BA

is {cAicAscBicBs eβui+βus }1/2 (36)

where

ui = 8A
i +8B

i +
∑
l

(V AB
il + V BB

il )+
∑
l

(V AA
il − V BB

il )cAl =
∑

p

(
8

p
i +

∑
ql

V
pq
il cql

)
(37)

and indices p and q in the last form of (37) take both A and B values.
Let us now discuss the treatments of the basic kinetic equation (30) for the ABv alloy

using the CFM. To simplify the notation, below we omit the indices A and r= B when
possible, re-labelnAi → ni , cAi → ci , and also put

nri = nBi ' 1− ni → n′i cBi ' 1− ni → c′i
vAA
il = V AA

il − 2V AB
il + V BB

il → vil . (38)

Methods for the CFM calculations of the free energyF {cαi} have been described earlier
[20, 21] and are simple enough. In particular, in the pair-cluster approximation of CFM
(coinciding with that of CVM) the analytical expression forF {cαi} of the AB alloy was
presented in [20] and [21]. Generalizing this approach to the ABv alloy case we obtain the
following expressions for the concentration derivativesFαi that enter (30)–(32):

FAi = ∂F

∂ci
= ϕA

i + T ln
ci

c′i
+ T

∑
j 6=i

ln

[
1− fij cj 2

Rij + 1+ fij (ci + cj )
]

(39a)

Fvi = ∂F

∂cvi
= ϕv

i + T ln
cvi

c′i
− T

∑
j 6=i

ln

[
1+ f v

ij cj
2

Rij + 1+ fij (ci − cj )
]

(39b)

Herefij = fij (vij ) or f v
ij = f v

ij (v
vA
ij ) is the Mayer function for the potentialvij or vvA

ij :

fij = exp(−βvij )− 1 f v
ij = exp(−βvvA

ij )− 1 (40)

with vij = vAA
ij given by (13) andvvA

ij given by (4b) for α = v and β = A:
vvA
ij = V vA

il − V vB
il − V BA

il + V BB
il , while the functionRij is

Rij = [1+ 2fij (cic
′
j + c′icj )+ f 2

ij (ci − cj )2]1/2. (41)

The CFM approach [21] can also be used to calculate the factorBis (33). The
calculations are straightforward but rather cumbersome and will be described elsewhere.
For usual interaction models and not too low temperatures,T & 0.5Tc whereTc is the
critical temperature for the alloy decomposition or ordering, the differences between CFM
and MFA results forBis usually do not exceed 10–30%.



Configurational kinetics of alloys via vacancy exchange mechanism1973

4. Equivalence of configurational kinetics for the nearest-neighbour vacancy
exchange model to that for the direct exchange model

In this section we show that for the nearest-neighbour vacancy exchange model (being
generally accepted and used) the main alloy component kinetics determined by (30) can
usually be described in terms of a certain equivalent direct exchange model.

Let us consider a multicomponent AB. . .Cv alloy with vacancies, e.g. the ABv alloy,
and put r= B in (1), while the other main components A,. . .,C will be labelled by index
ρ. Then (30)–(32) can be written as

dcρi
dt
=
∑
s

γ̃
ρv
is Bis [e

β(Fρs+Fvi ) − eβ(Fρi+Fvs )] (42a)

dcvi

dt
=
∑
s

Bis

[
eβFvs

(
γ vB
is +

∑
ρ

γ̃
vρ
is eβFρi

)
− {i → s}

]
(42b)

whereγ̃ ρv
is = γ ρv

is exp[β(V ρv
is − vρv

is )].
The factor exp(βFvi ) in (42) is proportional to the vacancy concentrationcvi , which is

illustrated by (34b) and (39b) and is actually a general relation of thermodynamics of dilute
solutions. Thus the time derivatives of the mean occupations are proportional to the local
vacancy concentrationcvi or cvs , which is natural for the vacancy-mediated kinetics. Ascvi

is quite small, this implies that the main component relaxation times are by a factor 1/cvi

larger than the time of the relaxation of vacancies to their ‘quasi-equilibrium’ distribution
cvi{cρi} minimizing the free energyF {cvi , cρi} at the given distribution{cρi} [24]. Therefore,
discarding the small correction of the relative order ofcvi � 1 we can find this ‘adiabatic’
vacancy distributioncvi by equating the left-hand side of (42b) to zero:

0=
∑
s

Bis eβ(Fvi+Fvs )

[
e−βFvi

(
γ vB
is +

∑
ρ

γ̃
vρ
is eβFρi

)
− {i → s}

]
. (43)

For the nearest-neighbour vacancy exchange model we can explicitly solve (43) for
quantities exp(βFvi ). In this case the coefficientsγ vB

is = γ vB
nn and γ̃ vρ

is = γ̃
vρ
nn are certain

constants not depending on indicesi and s. Then it is convenient to define for each sitei
a dimensionless quantityνi by the relation

νi = γ vB
nn exp(βFvi )

[γ vB
nn +

∑
ρ γ̃

vρ
nn exp(βFρi)]c̄v

(44)

wherec̄v is the average concentration of vacancies. Then the expression in square brackets
(43) is proportional to the differenceν−1

i − ν−1
s , and the solution of (43) is provided with

νi being a constant independent of the site numberi (though possibly depending on time,
as well as on temperature and other external parameters):

νi = ν(t). (45)

Relations (44) and (45) determine the above-mentioned adiabatic vacancy distribution
cvi{cρi}. Substituting these relations into (42a) we obtain the kinetic equation for the main
alloy component distribution

dcρi
dt
=
∑
s

γ̃
ρv
is Bis c̄vν(t)(e

βFρs − eβFρi ). (46)

Comparing (46) with those for the direct exchange model (given by (30)–(32) with
r = B and α = ρ) we see that (46) correspond to the direct exchange model with an
effective rate

(γ
ρB
is )eff = γ̃ ρv

is c̄vν(t) (47)
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while the direct exchange between the other main components,ρ and ρ ′, is absent:
(γ

ρρ ′
is )eff = 0 . Note that the effective direct exchange rate (47) is smaller by a factor

cv than the vacancy exchange ratesγ ρv or γ Bv.
Physically, the opportunity to reduce the vacancy-mediated kinetics to the equivalent

direct exchange kinetics is connected with the above-mentioned fact that in the course
of the alloy evolution the vacancy distribution adiabatically fast follows that of the main
components. Therefore, one may suppose that such equivalence holds not only for the
approximate kinetic equation (30) and the nearest-neighbour exchange model but is actually
a general feature of vacancy-mediated kinetics, though for more general treatments and
models the simple algebraic equation (47) can be replaced by some more complex relations.

The functionν(t) in (45)–(47) determines the rescaling of time between the actual
vacancy-mediated model and the equivalent direct exchange model. Note that for the
stationary state the functionsFvi andFρi in (44), according to (28a) and (29a), become
constant. Thus at ‘quasi-stationary’ stages of microstructural evolution, in particular, at
advanced stages of phase transformation when the new phase precipitates or antiphase
domains are well formed, the functionν(t) does not depend on time and the rescaling of time
becomes linear. Therefore, the asymptotic growth laws and scaling exponents for the direct
and the vacancy-mediated exchange mechanisms should be the same. If the adiabaticity
condition (45) holds (which can be violated only at very early stages of microstructural
evolution, see below), one can study the actual vacancy-mediated dynamics using the
equivalent direct exchange model just introducing the ‘time rescaling’. For example, for
the ABv alloy with the nearest-neighbour vacancy exchange rateγ̃ Av

nn = γ Av the actual time
t is related to the reduced timet∗de = γdetde of the equivalent direct exchange model by the
differential relation

dt = dt∗de/ν(t
∗
de)γ

Av c̄v. (48)

To find ν(t∗de) in such calculations one can assume that at the given main component
distribution {cρi} the vacancy distributioncvi is stationary, and thusν can be calculated
using in (44) the analytical expressions for suchcvi{cρi} given in [16], with the normalizing
constant expressed via the average vacancy concentrationc̄v. The form of the resulting
rescaling of time (48) is illustrated in figure 4 below.

Let us make remarks on the region of applicability of basic equations (30) and
(42)–(47). These equations describe evolution of alloy states in terms of only local
concentrations, i.e. mean occupation numbers〈npi〉 = cpi . Such description is complete
only when these averages provide a sufficiently full information on the alloy state,
i.e. when fluctuations of occupations are physically insignificant. This is evidently
the case for the equilibrium homogeneous alloy for which all physical characteristics
are obtained by averaging over large volumes including macroscopic numbers of atoms
N � 1, while fluctuative contributions have a relative order of magnitudeN−1/2 or N−1

[25]. For a nonequilibrium nonuniform alloy the averagescpi can provide a sufficiently
full description only when the microstructure is somewhat ‘coarsened’, thus observable
quantities correspond to averaging over some sufficiently large volumes (which is the
case, e.g., for standard electron microscopy studies). This can imply, for example, that in
investigations of phase transformations after a quench of a disordered alloy, the employment
of (30) and (42) is useful for description of only long-wave concentrational waves or of
microstructures that correspond to the presence of not too small precipitates of a new phase
(or antiphase domains) that include a sufficiently large number of atoms. However, just
these ‘mesoscopic’ stages of microstructural evolution appear to attract most interest in both
fundamental and applied studies of phase transformations (see e.g. [1–14]).
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Figure 1. The temporal evolution of mean site occupations,cAi = ci (upper row), andcvi

(lower row), for the model (i) described in the text at the following values of reduced time
t∗v = tγ Av c̄v: (a) and (a′), 1100; (b) and (b′), 4300; (c) and (c′), 18 000. The grey level linearly
varies withci or cvi from completely white to completely black, forci betweenci = 0 and
ci = 1, and forcvi between its minimum and maximum value for each of the figure parts; the
same colouring is used in figures 2 and 5 below.

For the applicability of the ‘adiabatic’ relations (43)–(47) the timet after the initial
alloy quench into the thermodynamic instability region should exceed the effective timeτvd

for the vacancy diffusion over a mean inter-vacancy distancelvv. At lesser times, i.e. at
very early stages of phase transformations, fluctuations in the initial vacancy distribution
can significantly affect the alloy evolution. This is discussed in the next section.

Figure 2. Temporal evolution ofci for model (i) via the direct exchange mechanism at the
following values of reduced timet∗de = tγde: (a) 230, (b) 1070 and (c) 5200.
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Figure 3. The time dependence of the functionν(t) (45) for model (i).

5. Computer simulation of phase transformations with vacancy-mediated dynamics

To illustrate the results of the previous section and to obtain an idea of the form of the
function ν(t) in (44)–(47) we performed computer simulation of phase transformations for
two-dimensional ABv alloy models using the simplest MFA (35). We consider the square
lattice containing 128× 128 sites with periodic boundary conditions and interactions in
three coordination spheres:v1, v2 and v3. Two models have been studied: (i)v1 = −1,
v2 = −0.8, v3 = −0.5, c0 = 0.35 andT = 0.5Tc (c0 and Tc being the average alloy
concentration and the critical temperature, respectively), which corresponds to the phase-
separating alloy, and (ii) that studied in [17] withv1 = 1, v2 = −0.8, v3 = −0.5, c0 = 0.325
andT = 0.424Tc, which corresponds to the alloy undergoing phase separation with ordering.
For simplicity, vacancies are supposed not to interact with both alloy atoms and each other:
V Av
ij = V Bv

ij = V vv
ij = 0, while the external fieldsϕi (4a) and the asymmetrical potentials

V AA
ij − V BB

ij are zero. The A–v and B–v exchange rates are nonzero only for the nearest-
neighbours and are supposed to be related asγ Bv

nn = γ Av exp(βv0/2) wherev0 =
∑
j vij

(this relation makes the functionν to be symmetric with respect to both alloy components,
A and B). For both models the initial state corresponds to the uniform disordered alloy
quenched to the temperatureT , with the average A component concentration〈ci〉 = c0, and
its random fluctuationsδci = ±0.01. The first and the second models contain 160 and 16
randomly distributed vacancies (i.e.c̄v ' 10−2 and 10−3), respectively.

The results of the simulations are presented in figures 1–7. Points a, b and c in figures 3
and 4 correspond to the states shown in figures 1 and 2, while points a, b, c and d in figure 6
correspond to the states shown in figure 5.

Let us first discuss figures 1–4 that describe the phase separation. Significant changes
of microstructure for this case correspond to the formation and evolution of the new phase
precipitates that include a large number of atoms. Such changes are realized via diffusion
of atoms over large distances, and thus they make many atomic jumps. As figures 1–4
describe just such slow changes, values of the reduced timet∗v = tγ Av c̄v for them are
large and much exceed the timeτ ∗vd = τvdγ

Av c̄v ∼ 1 needed for the vacancy distribution
equilibration mentioned in section 4 and discussed below. Therefore, effects of fluctuations
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in the initial vacancy distribution for the decomposition case are unimportant, unlike the
alloy ordering case considered below. In particular, fluctuations of quantitiesνi (44) around
their average value〈νi〉 = ν(t) at t∗v > τ ∗vd become small (similarly to those shown in
figure 6 for the ordering case), and for the states shown in figure 1 their magnitude is less
than one per cent. Therefore, the microstructural evolution fort∗v � τ ∗vd can be described
in terms of the direct exchange model (47).

Figure 4. Curve 1 (left scale): time dependence of the reduced free energy per sitef = βF/Ns
for model (i) and the vacancy exchange mechanism. Curve 2 (left scale): the same for the direct
exchange mechanism. Curve 3 (right scale): time dependence of the reduced direct exchange
time t∗de(t

∗
v ).

Comparison of figure 1(a)–(c) with figure 2 confirms this conclusion: all features of
microstructural evolution, such as the distribution of sizes, shapes and density of precipitates,
for the vacancy and direct exchange models are similar. Figure 1(a′)–(c′) also illustrates a
significant segregation of vacancies at interphase boundaries, in accordance with the results
of [16] for the model under consideration. Figure 1 also shows a notable enhancement
of vacancies in domains of sharp changes of local microstructure (such as vicinities of
‘evaporating’ precipitates in figure 1(a′) and (b′)), or coagulating precipitates in figure 1(a′),
which is a characteristic feature of vacancy-mediated kinetics.

Figure 3 shows the time dependence of the functionν(t) that is due to the evolution
of the main alloy component distribution. The asymptotic value of this function (given
by (44) with the equilibrium values ofFvi andFAi) is ν(∞) ' 0.51. Figure 4 shows the
reduced free energy per sitef (t∗v ) = βF/Ns (whereNs is the same as in (24)), and the
same quantity for the equivalent direct exchange model,fde(t

∗
v ) = f [t∗de(t

∗
v )], where the

dependencet∗de(t
∗
v ) (curve 3 in figure 4) is determined by (48). It is seen that the time

dependence of free energy for both kinetic models is virtually the same.
The equivalence of the vacancy-mediated and the direct exchange kinetics at not small

t∗v � τ ∗vd is also confirmed with simulations of alloy ordering for model (ii), (see figures 5
and 6). In particular, the microstructure in figure 5(d) is similar to that for the direct
exchange model shown in figure 5(a) of [17], and, according to (45)–(47), an analogous
similarity should hold for later times. Figures 5(a′)–(d′) and 7(c) illustrate the vacancy
ordering accompanying the main component ordering which for the equilibrium case was
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Figure 5. The same as in figure 1 but for model (ii) described in text at the following values
of reduced timet∗v : (a) and (a′), 0.24; (b) and (b′), 0.49; (c) and (c′), 1.27; (d) and (d′), 4.05.
The inset in 1(a′) shows the initial distribution of vacancies att∗v = 0.

discussed in [16] and was described with (31) and (32) of that work. Figure 5(c′) and (d′)
also shows a notable segregation of vacancies at antiphase boundaries, which again agrees
with the results of [16].

In the rest of this section we discuss features of the vacancy-mediated kinetics at very
early stages of ordering,t . τvd . The features are related to fluctuations in the initial
vacancy distribution and are illustrated in figures 5(a)–(c), 6 and 7. Let us first discuss the
characteristic relaxation times. To this end we consider the time dependence of the value
ν(t) = 〈νi〉 averaged over the lattice, its mean square deviation1ν(t) = 〈(νi − ν)2〉1/2, and
the reduced free energyf (t) = βF/Ns shown in figure 6. It is seen that the deviation1ν
is initially quite large which is due to the vacancy localization in the initial as-quenched
state (shown as an inset in figure 5(a′)). However, the subsequent diffusion of vacancies
results in a sharp decrease of fluctuations1νi , and after a certain timeτvd they become
quite small. The valueτvd can be estimated as the time needed for vacancies to diffuse over
the whole lattice, i.e to visit each lattice site approximately once. It implies the relation
a2γ τvd ∼ l2vv, wherea is the lattice constant,γ is of the order ofγ Av or γ Bv, andlvv is the
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Figure 5. (Continued)

average inter-vacancy distance. For ad-dimensional lattice,lvv is of the order ofa(c̄v)
−1/d

which gives

τvd ∼ 1/γ (c̄v)
2/d . (49)

For a 2D alloy the estimate yieldsτ ∗vd ∼ 1, which agrees with the order of magnitude of
the relaxation time for the deviation1ν(t) in figure 6.

At the same time, the characteristic relaxation time for ordering is determined by the
time τAB needed for one effective exchange of neighbouring A and B atoms. This time can
be estimated from the relationt∗de(τAB) ∼ 1, which according to (48) gives

τAB ∼ 1/γ Avνc̄v. (50)

Comparison of estimates (49) and (50) shows that two relaxation times are related as
τvd ∼ τABν(c̄v)

1−2/d . For 3D alloys it means thatτvd is, generally, by a factor(c̄v)
1/3

smaller thanτAB. For a 2D alloy andν ∼ 1 (which corresponds to model (ii) under
consideration) the estimate yieldsτvd ∼ τAB.
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Figure 6. The time dependence of the valueν(t) = 〈νi〉 averaged over the lattice (curve 1, left
scale), its mean square deviation1ν = 〈(νi − ν)2〉1/2 (curve 2, left scale) and the reduced free
energyf (t) = βF/Ns (curve 3, right scale) for model (ii).

To discuss the time dependence of functionsν(t) andf (t) in figure 6 it is convenient
to define the local mean compositionc̄i and the local order parameterηi [16]:

c̄i = 1

2

(
ci + 1

4

∑
j=nn(i)

cj

)
ηi = 1

2

(
ci − 1

4

∑
j=nn(i)

cj

)
exp(iksri ) (51)

where indexnn(i) means summation over nearest-neighbours of sitei, ks = (1, 1)2π/a is
the superstructure vector andri = (xi, yi) is the lattice site vector. At smallestt � τAB

the local order parametersηi grow with t linearly. As bothν andf cannot depend on the
sign of the order parameter, they should depend onηi and t at smallt quadratically. The
subsequent ordering results in some increase ofν(t) and the decrease off (t). The time
t ∼ τAB corresponds to an approximate completion of the initial congruent ordering that
occurs at approximately constant local compositionc̄i ' c0 [17, 19]. The subsequent alloy
decomposition into the ordered and disordered phase needs much longer timest � τAB, see
[17] and figures 1–4, thus the relevant variations of functionsν(t∗v ) andf (t∗v ) in figure 6
become very slow.

Microstructural evolution at early stages of ordering,t . τvd , is illustrated in figure 5(a)
and (b). Its prominent feature is the presence of localized (or heterogeneous) ordering, i.e.
formation and growth of isolated ordered domains within the disordered medium. As alloy
states under consideration are thermodynamically unstable with respect to ordering (their
compositionc0 and temperatureT correspond to the region below the ordering spinodal
in the c0, T plane [17]), the localized ordering is a characteristic feature of the vacancy-
mediated kinetics that is absent for the direct exchange model.

The phenomenon of localized ordering was first observed by Allen and Cahn (AC) in
their study of B2 ordering in Fe–Al alloys [19]. To interpret it, AC suggested that the
ordering of each domain was generated by a single vacancy during the initial alloy quench
from the high-temperature disordered phase. The vacancy was supposed to be trapped at the
interface between ordered and disordered materials, in an analogy with a similar trapping
observed in some computer simulations for equilibrium interfaces. These suggestions led
AC to the conclusion that there should be an approximate one-to-one correspondence
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Figure 7. The temporal evolution of model (ii) with a single vacancy in the 128×128 lattice.
(a) Local concentrationsci at the dimensionless time valuet ′ = tγ Av = 1000; the grey level
linearly varies withci between its minimum,cmin ' 0.23, and maximum,cmax ' 0.43. (b) The
local order parameterηi = η(xi) along the lineyi = 87a in (a); for curves 1, 2 and 3,t ′ is 1000,
3000 and 7000, respectively. (c) The same as in (b) but for the local vacancy concentration
cvi = cv(xi ); for curves 1 and 2,t ′ is 1000 and 3000.

between the initial vacancy numberNv = Nsc̄v and the observed ordered domain number
Nod = Nscod .

In more detail the localized ordering phenomenon was recently discussed by Athenes
et al [7]. These authors made a Monte Carlo simulation of B2 ordering in BCC alloys with
a single vacancy in the large simulation box. For certain values of the kinetic parameters
(being similar to those used in our model (ii)) Atheneset al observed the localized ordering
and concluded that this observation confirms the above-mentioned suggestions of AC [19].
Atheneset al also made numerical estimates of concentrationsc̄v andcod for AC experiments
and found(c̄v)exp ' (2–40)× 10−4; (cod)exp ' 5× 10−6. Let us note that these estimates
(even with their uncertainty) seem to suggest an inequality(c̄v)exp � (cod)exp rather than
the similarity(c̄v)exp ' (cod)exp supposed by AC.

The results of our simulation illustrated by figure 5(a) and (b) agree with the general
conclusions of AC and Atheneset al that the localized ordering phenomenon is due to the
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inhomogeneity of the initial vacancy distribution. However, our figure 5(a′) and (b′) (as
well as 7(c)) do not reveal any vacancy segregation (or ‘trapping’) at domain boundaries
for these highly nonequilibrium states, unlike the case of later, partly equilibrated states
shown in figure 5(c′) and (d′), or fully equilibrium boundaries studied in [16]. At the
same time, the results of these our simulations seem to imply that the localized ordering
can be related, not to the vacancy trapping, but to the vacancy concentration fluctuations
which result in the localization of the initial ordering in the regions enriched by vacancies
(see figure 5). Let us also note that the mean inter-vacancy distance in our simulation,
lvv ∼ a(c̄v)

−1/2 ' 30a, seems to be of the same order of magnitude as that in AC
experiments,(lvv)exp ∼ a(c̄v)

−1/3
exp , thus the inter-vacancy distance fluctuations may have a

similar scale, too. This ‘fluctuative’ interpretation of localized ordering can also explain the
above-mentioned inequality(c̄v)exp � (c̄od)exp: the total number of such vacancy-enriched
regions is evidently much lower than the total vacancy number.

To make a more direct comparison of our results with those of the Monte Carlo
simulation [7], we also simulated ordering in our model (ii) realized by a single vacancy
in the simulation box of 128×128 sites. Our results presented in figure 7 are qualitatively
similar to those of Atheneset al [7]. In particular, figure 7(a) and (b) shows the presence
of localized ordering. However, figure 7(c) again illustrates the absence of any interfacial
vacancy trapping. As discussed in [16], such trapping is characteristic of the equilibrium
interfaces and is due to the relevant thermodynamic gain, while in the non-equilibrium states
under consideration there seems to be no significant driving force for such trapping.

6. Conclusion

Let us summarize the main results of this work. To theoretically describe the evolution of
atomic distributions in non-equilibrium alloys via the realistic vacancy exchange mechanism
we generalize the earlier-suggested master equation approach to the many-component alloy
case. We present exact kinetic equations for average occupations of lattice sites and
various correlators of these occupations. We derive the expression for free energy of a
non-equilibrium alloy that has a fundamental property to not increase under spontaneous
evolution of the system. We also present approximate forms of kinetic equations which
correspond to mean-field and cluster field approximations.

These equations are used to show that, for the nearest-neighbour vacancy exchange
model, the evolution of the main alloy component distribution{cρi} can usually be described
in terms of an equivalent direct exchange model with some effective exchange rates that,
generally, depend on time. Physically, the equivalence is due to the fact that the relaxation
of distribution {cρi} via vacancy exchange at small vacancy concentrationc̄v occurs more
slowly by a factor 1/c̄v than that of the vacancy distribution. Therefore, the distribution
of vacancies adiabatically fast follows that of main components and corresponds to their
conditional equilibrium at the given{cρi}. These ‘adiabatic’ conditions can be violated only
under a sharp change of external parameters, such as a rapid alloy quench into the region
of its instability with respect to phase transformations. Then some ‘non-adiabatic’ effects
can occur at initial stages of evolution.

These conclusions are illustrated by simulations of decomposition and ordering via
vacancy-mediated exchange for a two-dimensional model of a binary alloy, with the use of
kinetic equations corresponding to the MFA. It is shown that for the decomposition case
the mentioned non-adiabatic effects are insignificant, and all features of microstructural
evolution do coincide with those for the equivalent direct exchange model. The last
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conclusion is also found to be true for the ordering case, except only for very initial stages
of ordering.

At these initial stages, a peculiar phenomenon of localized ordering has been observed
in our simulations, in agreement with the experiments [19] and Monte Carlo simulations
[7]. However, contrary to suggestions made in previous works, no vacancy trapping at
the ordered domain boundaries has been found for this initial period, and effects of spatial
fluctuations in the initial vacancy distribution seem to provide a more adequate explanation
for the localized ordering phenomenon.

Acknowledgments

The authors are much indebted to Georges Martin for numerous illuminating discussions.
The work was supported by the Russian Fund of Basic Research, grant No 97-02-17842.

References

[1] Yaldram K and Binder K 1991Acta Metall.39 707
Yaldram K and Binder K 1991J. Stat. Phys.62 161

[2] Yaldram K and Binder K 1991Z. Phys.B 82 405
[3] Fratzl P and Penrose O 1994Phys. Rev.B 50 3477
[4] Vives E and Planes A 1993Phys. Rev.B 47 2557
[5] Frontera C, Vives E and Planes A 1994Z. Phys.B 96 79
[6] Soisson F, Barbu A and Martin G 1996Acta Mater.44 3789
[7] Athenes M, Bellon P, Martin G and Haider F 1996Acta Mater.44 4739
[8] Geng C and Chen L Q 1994Scripta Metall. Mater.31 1507
[9] Chen L Q 1994Mater. Res. Soc. Symp. Proc.vol 319 (Pittsburgh, PA: Material Research Society) p 375

[10] Amar J C, Sullivan F E and Mountain R D 1988Phys. Rev.B 37 196
[11] Martin G 1990Phys. Rev.B 41 2279
[12] Chen L Q, Wang Y Z and Khachaturyan A G 1994Statics and Dynamics of Alloy Phase Transformations

(NATO Advanced Study Institute, Series B: Physics 319)ed A Gonis and P E A Turchi (New York:
Plenum) p 587

[13] Vaks V G and Beiden S V 1994Zh. Eksp. Teor. Fiz.105 1017 (Engl. Transl.Sov. Phys.–JETP78 546)
[14] Vaks V G, Beiden S V and Dobretsov V Yu 1995Pis. Zh. Eksp.Teor. Fiz.61 65 (Engl. Transl.JETP Lett.

61 68)
[15] Vaks V G 1996Pis. Zh. Eksp.Teor. Fiz.63 447 (Engl. Transl.JETP Lett.63 471)
[16] Belashchenko K D and Vaks V G 1997Zh. Eksp. Teor. Fiz.112 714
[17] Dobretsov V Yu, Vaks V G and Martin G 1996Phys. Rev.B 54 3227
[18] Chen L Q 1994Phys. Rev.B 49 3791
[19] Allen S M and Cahn J W 1976Acta Metall.24 425
[20] Vaks V G and Orlov V G 1986Fiz. Tverd. Tela28 3627
[21] Vaks V G, Zein N E and Kamyshenko V V 1988 J. Phys. F: Met. Phys.18 1641
[22] Sanchez J M, Ducastelle F and Gratias D 1984PhysicaA 128 334
[23] Martin G 1994Phys. Rev.B 50 12 362
[24] Abromeit C 1989Int. J. Mod. Phys.B 3 1301
[25] Landau L D and Lifshits E M 1976Statistical Physics(Moscow: Nauka) section 2


